Geometría Proyectiva

SEGUNDO CUATRIMESTRE 2007

Práctica 3 - Subvariedades diferenciales de \mathbb{R}^n

1. Sean d < m números naturales y sea $X \subset \mathbb{R}^m$ un subconjunto. Una d-carta de X es una terna (U,U',φ) donde $U \subset \mathbb{R}^d$ es un abierto conexo no vacío, $U' \subset \mathbb{R}^m$ es un abierto y $\varphi : U \to \mathbb{R}^m$ es una función diferenciable, inyectiva y regular tal que $\varphi(U) = U' \cap X$ y tal que la función inversa $\varphi^{-1} : \varphi(U) \to U$ es continua. Un d-atlas de X es una colección de d-cartas $\{(U_i, U'_i, \varphi_i), i \in I\}$ tal que $X \subset \bigcup_{i \in I} U'_i$. Decimos que X es una subvariedad diferencial de \mathbb{R}^m de dimensión d si existe un d-atlas de X.

Supongamos que (U, U', φ) y (V, V', ψ) son dos cartas de un atlas de X tales que $W = \varphi(U) \cap \psi(V) \neq \emptyset$. Demostrar que

$$\psi^{-1} \circ \varphi : \varphi^{-1}(W) \to \psi^{-1}(W)$$

es un difeomorfismo entre abiertos de \mathbb{R}^d .

- 2. Sean $X \subset \mathbb{R}^m$ e $Y \subset \mathbb{R}^n$ subvariedades diferenciales de respectivas dimensiones d y e. Sea $f: X \to Y$ una función continua. Demostrar que las siguientes condiciones son equivalentes:
 - a) Para todo $x_0 \in X$ existen $x_0 \in U \subset \mathbb{R}^m$ abierto y $F: U \to \mathbb{R}^n$ diferenciable tales que F(x) = f(x) para todo $x \in X \cap U$.
 - b) Para toda carta (U, U', φ) de X la composición $f \circ \varphi : U \to \mathbb{R}^n$ es diferenciable.
 - c) Para toda carta (U, U', φ) de X y para toda carta (V, V', ψ) de Y la **expresión local** $\psi^{-1} \circ f \circ \varphi : A \to B$ es una función diferenciable, donde $A \subset \mathbb{R}^d$ y $B \subset \mathbb{R}^e$ son ciertos abiertos.
- 3. Con la notación anterior, sea $x \in X$ un punto y (U, U', φ) una carta con $x \in \varphi(U)$. Sea $u \in U$ el único punto tal que $x = \varphi(u)$. Consideramos la derivada $d\varphi(u) : \mathbb{R}^d \to \mathbb{R}^m$ y definimos el **espacio tangente a** X **en** x como el subespacio lineal de \mathbb{R}^m

$$TX(x) = d\varphi(u)(\mathbb{R}^d)$$

Demostrar que si $x = \psi(v)$ donde (V, V', ψ) es otra carta de X entonces

$$d\varphi(u)(\mathbb{R}^d) = d\psi(v)(\mathbb{R}^d)$$

de modo que TX(x) es independiente de la carta elegida.

- 4. Sean $X \subset \mathbb{R}^m$ e $Y \subset \mathbb{R}^n$ subvariedades diferenciales de respectivas dimensiones d y e. Sea $f: X \to Y$ una función diferenciable, restricción de una función diferenciable $F: U \to \mathbb{R}^n$ como antes. Demostrar que para todo $x \in X$ la derivada $dF(x): \mathbb{R}^m \to \mathbb{R}^n$ satisface $dF(x)(TX(x)) \subset TY(F(x))$ y por lo tanto induce por restricción una aplicación lineal $TX(x) \to TY(f(x))$ que denotamos df(x). Demostrar que df(x) no depende de la F elegida como extensión de f. Describir df(x) en términos de la derivada de una expresión local de f. Demostrar que si $Z \subset \mathbb{R}^p$ es otra subvariedad y $g: Y \to Z$ es diferenciable entonces $d(g \circ f)(x) = dg(f(x)) \circ df(x)$ (regla de la cadena).
- 5. Sean $U \subset \mathbb{R}^m$ un abierto, $q \leq m$ y $F : U \to \mathbb{R}^q$ una función diferenciable tales que $0 \in \mathbb{R}^m$ es un **valor regular** de F (o sea, para todo $x \in U$ tal que F(x) = 0 vale que $dF(x) : \mathbb{R}^m \to \mathbb{R}^q$ es sobreyectiva). Sea $X = F^{-1}(0)$. Demostrar:
 - a) X es una subvariedad diferencial de dimensión d = m q. En el caso q = 1 decimos que X es la **hipersuperficie definida por** F.
 - b) $TX(x) = \ker dF(x)$, para todo $x \in X$. O sea, escribiendo $F = (F_1, \dots, F_q)$ se tiene

$$TX(x) = \{ y \in \mathbb{R}^m / \sum_j \frac{\partial F_i(x)}{\partial x_j} \ y_j = 0, \forall i \}$$

- c) Sea $V \subset \mathbb{R}^m$ un abierto y $F: V \to \mathbb{R}^q$ una función diferenciable. Consideramos el conjunto $F^{-1}(0) \subset V$. Sea $S(F) \subset V$ el conjunto de **puntos singulares** de F (o sea, puntos donde la derivada de F no es sobreyectiva). Demostrar que S(F) es un cerrado y que $X = F^{-1}(0) S(F)$ (si es no-vacío) es una subvariedad de dimensión m-q.
- d) Para todo $x \in V$ definimos $TF(x) = \ker dF(x)$; es un subespacio vectorial de \mathbb{R}^m de dimensión $\geq m-q$. Si $x \in X = F^{-1}(0) S(F)$ entonces TF(x) tiene dimensión m-q y TF(x) = TX(x).

 Sugerencia: Utilizar el teorema de la función implícita.
- 6. Sea $X \subset \mathbb{R}^m$ un subconjunto y sean d, e números naturales. Supongamos que existe un d-atlas para X y que también existe un e-atlas para X. Demostrar que d = e.
- 7. Sea $U \subset \mathbb{R}^d$ un abierto conexo y sea $\varphi : U \to \mathbb{R}^m$ una función diferenciable, inyectiva y regular. ¿Es verdad que $X = \varphi(U)$ es una subvariedad de \mathbb{R}^m ?
- 8. a) Hallar una función diferenciable $f: \mathbb{R}^m \to \mathbb{R}$ tal que $f^{-1}(0) = C$ no es una variedad.
 - b) Hallar una función diferenciable $f: \mathbb{R}^m \to \mathbb{R}$ tal que $f^{-1}(0) = C$ es una variedad de dimensión distinta de m-1.

- c) Sea $C \subset \mathbb{R}^m$ un conjunto cerrado cualquiera. ¿Existe una función diferenciable $f: \mathbb{R}^m \to \mathbb{R}$ tal que $f^{-1}(0) = C$?
- 9. Consideremos el espacio vectorial $\mathbb{R}^{n\times n}$ de todas las matrices $n\times n$ con coeficientes reales. Sea det : $\mathbb{R}^{n\times n}\to\mathbb{R}$ la función determinante. Definimos

$$\Delta = \Delta(n, \mathbb{R}) = \{ a \in \mathbb{R}^{n \times n}, \det(a) = 0 \}$$

$$GL(n, \mathbb{R}) = \{ a \in \mathbb{R}^{n \times n}, \det(a) \neq 0 \} = \mathbb{R}^{n \times n} - \Delta$$

$$SL(n, \mathbb{R}) = \{ a \in \mathbb{R}^{n \times n}, \det(a) = 1 \}$$

Demostrar:

- a) $GL(n, \mathbb{R})$ y $SL(n, \mathbb{R})$ son cerrados por producto de matrices y contienen a la matriz identidad. Por lo tanto, tienen estructura de grupo. Demostrar que ambos son subvariedades, de dimensiones respectivas n^2 y $n^2 1$.
- b) det es un polinomio de grado n en n^2 variables. Demostrar que el conjunto de ceros regulares Δ_{reg} de det consiste de las matrices de rango n-1; es una variedad de dimension n^2-1 . Demostrar también que det es un polinomio irreducible.
- c) Sea $U \subset \mathbb{R}^{n \times n}$ el conjunto de las matrices con autovalores distintos (nos referimos a todos los autovalores, reales y complejos). Demostrar que U es un abierto denso en $\mathbb{R}^{n \times n}$.
- d) Sea $O(n,\mathbb{R})=\{a\in\mathbb{R}^{n\times n},\ a.a^t=1\}$. Demostrar que $O(n,\mathbb{R})$ es una subvariedad diferencial de $\mathbb{R}^{n\times n}$; calcular su dimensión. Sugerencia: Expresar $O(n,\mathbb{R})$ como imagen inversa de un valor regular.